Connexion

Chicago Wolves
GP: 53 | W: 20 | L: 26 | OTL: 7 | P: 47
GF: 174 | GA: 217 | PP%: 22.30% | PK%: 77.66%
DG: Francis Lachance | Morale : 99 | Moyenne d’équipe : 64
Prochains matchs #740 vs Colorado Eagles
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Chicago Wolves
20-26-7, 47pts
4
FINAL
5 Providence Bruins
25-19-9, 59pts
Team Stats
L1SéquenceOTL1
10-16-1Fiche domicile14-9-4
10-10-6Fiche domicile11-10-5
2-7-1Derniers 10 matchs3-5-2
3.28Buts par match 3.70
4.09Buts contre par match 3.98
22.30%Pourcentage en avantage numérique21.38%
77.66%Pourcentage en désavantage numérique80.37%
Chicago Wolves
20-26-7, 47pts
1
FINAL
6 Grand Rapids Griffins
22-25-6, 50pts
Team Stats
L1SéquenceW1
10-16-1Fiche domicile10-13-4
10-10-6Fiche domicile12-12-2
2-7-1Derniers 10 matchs5-4-1
3.28Buts par match 4.02
4.09Buts contre par match 4.23
22.30%Pourcentage en avantage numérique29.32%
77.66%Pourcentage en désavantage numérique74.82%
Chicago Wolves
20-26-7, 47pts
Jour 127
Colorado Eagles
28-18-6, 62pts
Statistiques d’équipe
L1SéquenceL1
10-16-1Fiche domicile12-9-4
10-10-6Fiche visiteur16-9-2
2-7-110 derniers matchs6-2-2
3.28Buts par match 3.75
4.09Buts contre par match 3.75
22.30%Pourcentage en avantage numérique26.19%
77.66%Pourcentage en désavantage numérique80.10%
Chicago Wolves
20-26-7, 47pts
Jour 131
Providence Bruins
25-19-9, 59pts
Statistiques d’équipe
L1SéquenceOTL1
10-16-1Fiche domicile14-9-4
10-10-6Fiche visiteur11-10-5
2-7-110 derniers matchs3-5-2
3.28Buts par match 3.70
4.09Buts contre par match 3.70
22.30%Pourcentage en avantage numérique21.38%
77.66%Pourcentage en désavantage numérique80.37%
Chicago Wolves
20-26-7, 47pts
Jour 132
Belleville Senators
24-24-5, 53pts
Statistiques d’équipe
L1SéquenceW3
10-16-1Fiche domicile15-11-1
10-10-6Fiche visiteur9-13-4
2-7-110 derniers matchs5-2-3
3.28Buts par match 3.42
4.09Buts contre par match 3.42
22.30%Pourcentage en avantage numérique14.50%
77.66%Pourcentage en désavantage numérique76.69%
Meneurs d'équipe
Buts
Martin Frk
26
Passes
Filip Sveningsson
37
Points
Filip Sveningsson
50
Plus/Moins
Anthony Salinitri
4
Victoires
Michael Hrabal
10
Pourcentage d’arrêts
Topias Leinonen
0.915

Statistiques d’équipe
Buts pour
174
3.28 GFG
Tirs pour
2052
38.72 Avg
Pourcentage en avantage numérique
22.3%
31 GF
Début de zone offensive
39.5%
Buts contre
217
4.09 GAA
Tirs contre
2174
41.02 Avg
Pourcentage en désavantage numérique
77.7%%
21 GA
Début de la zone défensive
37.5%
Informations de l'équipe

Directeur généralFrancis Lachance
EntraîneurPaul Maurice
DivisionEastern
ConférenceConference 1
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité10,000
Assistance9,478
Billets de saison4,000


Informations de la formation

Équipe Pro25
Équipe Mineure20
Limite contact 45 / 75
Espoirs2


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Todd Bugess (R)XX99.0069347487757579788673736565646155996902711,150,000$
2Adam Lowry X98.008048718576838371516771656579864399690301850,000$
3Martin Frk X99.007640758577838367526468686583725199680292750,000$
4Filip Sveningsson (R)X100.008047668776707476526674616867674999670241700,000$
5Juraj Slafkovsky (R)X99.007941747081686880637475727352519299670192925,000$
6Nicholas Henry (R)X99.0073367674757576725771716968606161996602421,000,000$
7Artyom Manyukan (R)X100.006124808764737570516565626562784899650251505,000$
8Cutter Gauthier (R)XX99.007534767277707070816774727336378699650192925,000$
9Tyler Soy (R)X100.005418858372727960865664626862674499630262510,000$
10Alex Dostie (R)X100.005418858373767962865861666356535799630262600,000$
11Christopher Lalancette X100.004411968474808159875659616364684299630292510,000$
12Anthony SalinitriX100.006431757472656966775866616868724999620251505,000$
13Marek Tvrdon X100.005624888281828253524953666374664099620301510,000$
14Reid Duke (R)X100.005928807476717560845462636874754499620271510,000$
15Connor Carrick X98.005627878476868364566764646472863799670292750,000$
16Henry Thrun (R)X98.006532827977818165526454645547576499650222725,000$
17Mitchell WheatonX100.005823947583828356545453715560644199650283880,000$
18Jakub VotjaX99.007136677371626257516464686379792099640362500,000$
19Yann SauveX100.00511499877978773748363874486868259963N0333500,001$
20Will Borgen (R)X100.00592479767571755054474267506182519962N0262500,001$
21Matthew CairnsX100.007135756676666948494848715049526099610253625,000$
Rayé
1Luke Mittlestadt (R)X95.826432766970707068506968636841505999620203500,000$
MOYENNE D’ÉQUIPE99.23653080797575766363606266636366519965
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Frans Tuohimaa 100.008285817992717176766965767334996403221,000,000$
2Michael Hrabal (R)99.00777581857878787877777839378299610183650,000$
3Topias Leinonen (R)100.00747585857180807070726839387999590192650,000$
Rayé
MOYENNE D’ÉQUIPE99.6778788283807676757473705149659961
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Paul Maurice71938571909182CAN545250,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Filip SveningssonChicago Wolves (CAR)LW53133750-2622011756257551135.06%2895017.93571217870002220043.55%624321011.0513000330
2Martin Frk Chicago Wolves (CAR)RW49262248-1320075702246713311.61%2294219.225510281080002121147.22%1085632101.0203000225
3Juraj SlafkovskyChicago Wolves (CAR)LW47201939-91606849203431119.85%3081217.2823510650000163140.82%983621010.9601000223
4Todd BugessChicago Wolves (CAR)C/RW37132538-21805250185521197.03%3480421.75461016870001281149.82%5584216000.9401000032
5Cutter GauthierChicago Wolves (CAR)C/LW47132134-171205462102315912.75%2075716.12268985000060048.48%9881417000.9011000031
6Artyom ManyukanChicago Wolves (CAR)RW46111728-10805029102297310.78%1664013.921565330000152036.59%412713000.8700000220
7Alex DostieChicago Wolves (CAR)C53111627-400375015248927.24%2169813.182024170002181154.41%4542824000.7711000212
8Nicholas HenryChicago Wolves (CAR)RW40121123-162156141118429210.17%2066216.5725711750000230043.14%512312000.6900001101
9Adam Lowry Chicago Wolves (CAR)LW31111021-17235773414035737.86%2065421.1204410460001334136.96%923814000.6401100042
10Christopher Lalancette Chicago Wolves (CAR)C4061521-220018507422428.11%2069917.490668730000110052.39%5651212000.6000000010
11Luke MittlestadtChicago Wolves (CAR)D5031619-114048456330344.76%6193818.77224689011222000%01738000.4000000001
12Tyler SoyChicago Wolves (CAR)C5381018-1000243377304810.39%74768.990111160002200152.71%332239000.7600000101
13Connor Carrick Chicago Wolves (CAR)D284711-180017314820118.33%4264623.10202535000329200%01325000.3400000012
14Mitchell WheatonChicago Wolves (CAR)D3901010-290027324521140%7573318.80011662000040000%0928000.2700000010
15Matthew CairnsChicago Wolves (CAR)D5318934026314013192.50%3568813.00000231000025000%0223000.2600000000
16Jakub VotjaChicago Wolves (CAR)D31459-211203639437199.30%5357118.44303762000226100%0323000.3100000010
17Henry ThrunChicago Wolves (CAR)D32257-131003126241498.33%4463219.78011740000130000%01321000.2200000000
18Anthony SalinitriChicago Wolves (CAR)C463364002183410378.82%102134.6310118000060044.44%1862000.5600000001
19Will BorgenChicago Wolves (CAR)D410553401527208100%3253813.13011212000019000%0214000.1900000000
20Reid DukeChicago Wolves (CAR)C53134-30014122111184.76%83115.8800006000070044.44%1873000.2600000000
21Yann SauveChicago Wolves (CAR)D30022-2000837269130%4259019.68011238000037000%0412000.0700000000
22Marek Tvrdon Chicago Wolves (CAR)LW43112-340182120865.00%133257.56000000002100040.00%1059000.1200000000
Statistiques d’équipe totales ou en moyenne942163268431-26317810894833201860511458.08%6531428915.1731548515710840112046615649.60%3395423389120.60311101132421
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Frans Tuohimaa Chicago Wolves (CAR)26101230.8944.38141220103975487210.60052514312
2Michael HrabalChicago Wolves (CAR)29101330.9083.651675001021104540100.600102627123
3Topias LeinonenChicago Wolves (CAR)20110.9154.0012000894410000212000
Statistiques d’équipe totales ou en moyenne57202670.9023.983208202132173106831155353435


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Type Salaire actuel Salaire restantPlafond salarial Non Activé Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Non-échange Année 2Non-échange Année 3Non-échange Année 4Non-échange Année 5Non-échange Année 6Non-échange Année 7Non-échange Année 8Non-échange Année 9Non-échange Année 10Lien
Adam Lowry Chicago Wolves (CAR)LW301984-10-14 11:57:08No200 Lbs6 ft4NoNoN/ANoNo1Pro & Farm850,000$290,789$0$0$No------------------
Alex DostieChicago Wolves (CAR)C261988-10-09 03:09:13Yes186 Lbs6 ft1NoNoN/ANoNo2Pro & Farm600,000$205,263$0$0$No600,000$--------No--------
Anthony SalinitriChicago Wolves (CAR)C251989-08-31 20:37:59No186 Lbs5 ft11NoNoN/ANoNo1Pro & Farm505,000$172,763$0$0$No------------------
Artyom ManyukanChicago Wolves (CAR)RW251989-09-04 18:12:38Yes156 Lbs5 ft7NoNoN/ANoNo1Pro & Farm505,000$172,763$0$0$No------------------
Christopher Lalancette Chicago Wolves (CAR)C291985-10-14 12:10:00No197 Lbs6 ft1NoNoN/ANoNo2Pro & Farm510,000$174,474$0$0$No510,000$--------No--------
Connor Carrick Chicago Wolves (CAR)D291985-10-14 13:08:35No204 Lbs6 ft1NoNoN/ANoNo2Pro & Farm750,000$256,579$0$0$No750,000$--------No--------
Cutter GauthierChicago Wolves (CAR)C/LW191995-09-01 05:29:56Yes202 Lbs6 ft4NoNoN/ANoNo2Pro & Farm925,000$316,447$0$0$No925,000$--------No--------
Filip SveningssonChicago Wolves (CAR)LW241990-09-07 20:28:47Yes193 Lbs6 ft3NoNoN/ANoNo1Pro & Farm700,000$239,474$0$0$No------------------
Frans Tuohimaa Chicago Wolves (CAR)G321982-10-14 10:43:38No190 Lbs6 ft2NoNoN/ANoNo2Pro & Farm1,000,000$342,105$0$0$No1,000,000$--------No--------
Henry ThrunChicago Wolves (CAR)D221992-08-31 21:23:33Yes203 Lbs6 ft3NoNoN/ANoNo2Pro & Farm725,000$248,026$0$0$No725,000$--------No--------
Jakub VotjaChicago Wolves (CAR)D361978-08-31 09:15:06No35 Lbs1 ft7NoNoN/ANoNo2Pro & Farm500,000$171,053$0$0$No500,000$--------No--------
Juraj SlafkovskyChicago Wolves (CAR)LW191995-09-01 05:32:03Yes231 Lbs6 ft4NoNoN/ANoNo2Pro & Farm925,000$316,447$0$0$No925,000$--------No--------
Luke MittlestadtChicago Wolves (CAR)D201994-09-09 09:34:46Yes174 Lbs5 ft11NoNoN/ANoNo3Pro & Farm500,000$171,053$0$0$No500,000$500,000$-------NoNo-------
Marek Tvrdon Chicago Wolves (CAR)LW301984-10-14 12:51:58No229 Lbs6 ft2NoNoN/ANoNo1Pro & Farm510,000$174,474$0$0$No------------------
Martin Frk Chicago Wolves (CAR)RW291985-10-14 11:36:33No217 Lbs6 ft1NoNoN/ANoNo2Pro & Farm750,000$256,579$0$0$No750,000$--------No--------
Matthew CairnsChicago Wolves (CAR)D251989-08-31 20:26:08No209 Lbs6 ft2NoNoN/ANoNo3Pro & Farm625,000$213,816$0$0$No625,000$625,000$-------NoNo-------
Michael HrabalChicago Wolves (CAR)G181996-09-09 09:36:33Yes216 Lbs6 ft7NoNoN/ANoNo3Pro & Farm650,000$222,368$0$0$No650,000$650,000$-------NoNo-------
Mitchell WheatonChicago Wolves (CAR)D281986-10-05 16:05:45No237 Lbs6 ft5NoNoN/ANoNo3Pro & Farm880,000$301,053$0$0$No880,000$880,000$-------NoNo-------
Nicholas HenryChicago Wolves (CAR)RW241990-10-04 05:54:13Yes202 Lbs5 ft11NoNoTrade2024-01-05NoNo2Pro & Farm1,000,000$342,105$0$0$No1,000,000$--------No--------
Reid DukeChicago Wolves (CAR)C271987-09-07 20:29:46Yes204 Lbs6 ft0NoNoN/ANoNo1Pro & Farm510,000$174,474$0$0$No------------------
Todd BugessChicago Wolves (CAR)C/RW271987-10-09 01:44:39Yes189 Lbs6 ft4NoNoN/ANoNo1Pro & Farm1,150,000$393,421$0$0$No------------------
Topias LeinonenChicago Wolves (CAR)G191995-09-01 05:34:07Yes235 Lbs6 ft5NoNoN/ANoNo2Pro & Farm650,000$222,368$0$0$No650,000$--------No--------
Tyler SoyChicago Wolves (CAR)C261988-10-09 02:32:47Yes183 Lbs6 ft0NoNoN/ANoNo2Pro & Farm510,000$174,474$0$0$No510,000$--------No--------
Will BorgenChicago Wolves (CAR)D261988-09-04 18:41:54Yes200 Lbs6 ft2YesNoN/ANoNo2Pro & Farm500,001$171,053$0$0$No500,001$--------Yes--------
Yann SauveChicago Wolves (CAR)D331981-08-06 20:38:02No227 Lbs6 ft2YesNoN/ANoNo3Pro & Farm500,001$171,053$0$0$No500,001$500,001$-------YesYes-------
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2525.92196 Lbs6 ft01.92689,200$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Adam Lowry Todd BugessMartin Frk 40122
2Juraj SlafkovskyCutter GauthierNicholas Henry30122
3Filip SveningssonChristopher Lalancette Artyom Manyukan20122
4Marek Tvrdon Alex DostieAdam Lowry 10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Connor Carrick Henry Thrun40122
2Mitchell WheatonJakub Votja30122
3Yann SauveWill Borgen20122
4Matthew CairnsConnor Carrick 10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Adam Lowry Todd BugessMartin Frk 60122
2Juraj SlafkovskyCutter GauthierNicholas Henry40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Connor Carrick Henry Thrun60122
2Mitchell WheatonJakub Votja40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Adam Lowry Todd Bugess60122
2Martin Frk Juraj Slafkovsky40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Connor Carrick Henry Thrun60122
2Mitchell WheatonJakub Votja40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Adam Lowry 60122Connor Carrick Henry Thrun60122
2Todd Bugess40122Mitchell WheatonJakub Votja40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Adam Lowry Todd Bugess60122
2Martin Frk Juraj Slafkovsky40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Connor Carrick Henry Thrun60122
2Mitchell WheatonJakub Votja40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Adam Lowry Todd BugessMartin Frk Connor Carrick Henry Thrun
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Adam Lowry Todd BugessMartin Frk Connor Carrick Henry Thrun
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Tyler Soy, Reid Duke, Anthony SalinitriTyler Soy, Reid DukeAnthony Salinitri
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Yann Sauve, Will Borgen, Matthew CairnsYann SauveWill Borgen, Matthew Cairns
Tirs de pénalité
Adam Lowry , Todd Bugess, Martin Frk , Juraj Slafkovsky, Filip Sveningsson
Gardien
#1 : Frans Tuohimaa , #2 : Michael Hrabal, #3 : Topias Leinonen
Lignes d’attaque personnalisées en prolongation
Adam Lowry , Todd Bugess, Martin Frk , Juraj Slafkovsky, Filip Sveningsson, Nicholas Henry, Nicholas Henry, Artyom Manyukan, Cutter Gauthier, Christopher Lalancette , Alex Dostie
Lignes de défense personnalisées en prolongation
Connor Carrick , Henry Thrun, Mitchell Wheaton, Jakub Votja, Yann Sauve


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Abbotsford's Canucks21100000660110000003211010000034-120.5006814005461537696527136653681232328112.50%10100.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
2Bakersfield Condors210000018711000000145-11100000042230.75081321005461537866527136653681224397114.29%20100.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
3Belleville Senators2110000057-2110000004221010000015-420.50059140054615377165271366536793010403133.33%5260.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
4Bridgeport's Islanders2110000068-2110000003121010000037-420.50061117005461537766527136653688286484250.00%3166.67%0697143748.50%654136447.95%38684045.95%10976371176467942469
5Calgary Wranglers2010100069-31010000026-41000100043120.5006915005461537706527136653693296363133.33%30100.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
6Charlotte Checkers20200000511-61010000014-31010000047-300.000581300546153772652713665368227837300.00%4175.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
7Colorado Eagles1010000023-11010000023-10000000000000.000246005461537296527136653641122165120.00%10100.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
8Grand Rapids Griffins2010100059-4100010004311010000016-520.5005914005461537756527136653684271136100.00%3166.67%0697143748.50%654136447.95%38684045.95%10976371176467942469
9Hartford Wolfpack20100100610-41010000036-31000010034-110.25061016005461537736527136653693392444125.00%110.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
10Henderson Silver Knights20200000810-21010000034-11010000056-100.00081523005461537101652713665368225632700.00%3233.33%0697143748.50%654136447.95%38684045.95%10976371176467942469
11Hershey Bears21000100761110000003121000010045-130.75071320005461537526527136653684240354125.00%000%0697143748.50%654136447.95%38684045.95%10976371176467942469
12Iowa Wild2010001089-11010000024-21000001065120.500813210054615377165271366536782712263133.33%60100.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
13Laval Rocket2110000010911010000034-11100000075220.500101727005461537926527136653689332353133.33%10100.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
14Lehigh Valley Phantoms21001000945110000005141000100043141.000913220054615377865271366536501344210220.00%2150.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
15Manitoba Moose2110000045-11010000014-31100000031220.5004711005461537726527136653660318363266.67%40100.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
16Ontario Reign2010010047-31010000024-21000010023-110.2504812105461537756527136653680254307114.29%20100.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
17Providence Bruins20000011880100000104311000000145-130.750810180054615376165271366536863412367114.29%6266.67%0697143748.50%654136447.95%38684045.95%10976371176467942469
18Rochester Americans20200000310-71010000027-51010000013-200.0003580054615378365271366536922414377114.29%70100.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
19Rockford IceHogs2010010046-21010000012-11000010034-110.25048120054615378865271366536763510284125.00%50100.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
20San Diego Gulls 2110000079-21010000026-41100000053220.500712190054615377565271366536882810326233.33%5180.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
21San Jose Barracuda210010001183110000005321000100065141.0001119300054615379265271366536924316393266.67%8362.50%1697143748.50%654136447.95%38684045.95%10976371176467942469
22Springfield Thunderbirds2110000068-21010000014-31100000054120.5006915005461537756527136653670241229600.00%6183.33%0697143748.50%654136447.95%38684045.95%10976371176467942469
23Syracuse Crunch2100000112111110000005321000000178-130.750122133005461537956527136653691288336233.33%4250.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
24Texas Stars21100000711-41010000029-71100000052320.5007111800546153756652713665368516839400.00%40100.00%1697143748.50%654136447.95%38684045.95%10976371176467942469
25Toronto Marlies20200000312-91010000024-21010000018-700.000358005461537826527136653676248329111.11%4175.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
26Utica Comets21100000862110000006241010000024-220.50081624005461537936527136653681332234250.00%10100.00%0697143748.50%654136447.95%38684045.95%10976371176467942469
27Wilkes-Barre/Scranton Penguins2020000068-21010000034-11010000034-100.0006915005461537906527136653692196278337.50%3233.33%0697143748.50%654136447.95%38684045.95%10976371176467942469
Total53142604423174217-43278160101178101-23266100341296116-20470.44317429246610546153720526527136653621747231939191393122.30%942177.66%2697143748.50%654136447.95%38684045.95%10976371176467942469
_Since Last GM Reset53142604423174217-43278160101178101-23266100341296116-20470.44317429246610546153720526527136653621747231939191393122.30%942177.66%2697143748.50%654136447.95%38684045.95%10976371176467942469
_Vs Conference53142604423174217-43278160101178101-23266100341296116-20470.44317429246610546153720526527136653621747231939191393122.30%942177.66%2697143748.50%654136447.95%38684045.95%10976371176467942469
_Vs Division288120121293119-26146600010484531426012024574-29240.42993156249005461537109365271366536116738393505731824.66%441468.18%0697143748.50%654136447.95%38684045.95%10976371176467942469

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
5347L11742924662052217472319391910
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
5314264423174217
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
27816101178101
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
26610341296116
Derniers 10 matchs
WLOTWOTL SOWSOL
270001
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
1393122.30%942177.66%2
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
652713665365461537
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
697143748.50%654136447.95%38684045.95%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
10976371176467942469


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
13Rochester Americans7Chicago Wolves2BLSommaire du match
425Syracuse Crunch3Chicago Wolves5BWSommaire du match
639Lehigh Valley Phantoms1Chicago Wolves5BWSommaire du match
744Chicago Wolves7Laval Rocket5AWSommaire du match
958Chicago Wolves5Henderson Silver Knights6ALSommaire du match
1169Chicago Wolves4Charlotte Checkers7ALSommaire du match
1384Chicago Wolves3Wilkes-Barre/Scranton Penguins4ALSommaire du match
1592Chicago Wolves4Calgary Wranglers3AWXSommaire du match
18109Chicago Wolves3Rockford IceHogs4ALXSommaire du match
20120Toronto Marlies4Chicago Wolves2BLSommaire du match
21125Bakersfield Condors5Chicago Wolves4BLXXSommaire du match
25148Chicago Wolves5San Diego Gulls 3AWSommaire du match
28164Chicago Wolves3Hartford Wolfpack4ALXSommaire du match
30177Iowa Wild4Chicago Wolves2BLSommaire du match
32187Chicago Wolves4Hershey Bears5ALXSommaire du match
34199Springfield Thunderbirds4Chicago Wolves1BLSommaire du match
37220Chicago Wolves2Ontario Reign3ALXSommaire du match
39229Hershey Bears1Chicago Wolves3BWSommaire du match
42247Colorado Eagles3Chicago Wolves2BLSommaire du match
43253Chicago Wolves2Utica Comets4ALSommaire du match
45263Abbotsford's Canucks2Chicago Wolves3BWSommaire du match
47280Providence Bruins3Chicago Wolves4BWXXSommaire du match
50297Texas Stars9Chicago Wolves2BLSommaire du match
51301Manitoba Moose4Chicago Wolves1BLSommaire du match
57336Chicago Wolves1Belleville Senators5ALSommaire du match
58340Bridgeport's Islanders1Chicago Wolves3BWSommaire du match
60353Chicago Wolves3Manitoba Moose1AWSommaire du match
63373Calgary Wranglers6Chicago Wolves2BLSommaire du match
65385Laval Rocket4Chicago Wolves3BLSommaire du match
69403Chicago Wolves6San Jose Barracuda5AWXSommaire du match
72422Hartford Wolfpack6Chicago Wolves3BLSommaire du match
74435Ontario Reign4Chicago Wolves2BLSommaire du match
76447Chicago Wolves4Lehigh Valley Phantoms3AWXSommaire du match
78457Chicago Wolves5Springfield Thunderbirds4AWSommaire du match
80468San Jose Barracuda3Chicago Wolves5BWSommaire du match
82481Chicago Wolves5Texas Stars2AWSommaire du match
85500Chicago Wolves7Syracuse Crunch8ALXXSommaire du match
87509Wilkes-Barre/Scranton Penguins4Chicago Wolves3BLSommaire du match
89521Henderson Silver Knights4Chicago Wolves3BLSommaire du match
92541Chicago Wolves6Iowa Wild5AWXXSommaire du match
93547Utica Comets2Chicago Wolves6BWSommaire du match
97570Grand Rapids Griffins3Chicago Wolves4BWXSommaire du match
98576Chicago Wolves1Toronto Marlies8ALSommaire du match
101593Chicago Wolves4Bakersfield Condors2AWSommaire du match
103605Charlotte Checkers4Chicago Wolves1BLSommaire du match
106620Belleville Senators2Chicago Wolves4BWSommaire du match
108634Chicago Wolves3Bridgeport's Islanders7ALSommaire du match
109641San Diego Gulls 6Chicago Wolves2BLSommaire du match
112657Chicago Wolves1Rochester Americans3ALSommaire du match
116677Chicago Wolves3Abbotsford's Canucks4ALSommaire du match
118692Rockford IceHogs2Chicago Wolves1BLSommaire du match
120704Chicago Wolves4Providence Bruins5ALXXSommaire du match
125727Chicago Wolves1Grand Rapids Griffins6ALSommaire du match
127740Chicago Wolves-Colorado Eagles-
131758Chicago Wolves-Providence Bruins-
132767Chicago Wolves-Belleville Senators-
135790Bakersfield Condors-Chicago Wolves-
137801Chicago Wolves-Hartford Wolfpack-
140819Syracuse Crunch-Chicago Wolves-
141822Ontario Reign-Chicago Wolves-
143838Bridgeport's Islanders-Chicago Wolves-
146854Chicago Wolves-Lehigh Valley Phantoms-
147860Texas Stars-Chicago Wolves-
150881Springfield Thunderbirds-Chicago Wolves-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
153899Chicago Wolves-Abbotsford's Canucks-
154905Rockford IceHogs-Chicago Wolves-
156920Wilkes-Barre/Scranton Penguins-Chicago Wolves-
158933Chicago Wolves-Toronto Marlies-
161949Chicago Wolves-San Jose Barracuda-
162956Chicago Wolves-San Diego Gulls -
168994Rochester Americans-Chicago Wolves-
1711015Calgary Wranglers-Chicago Wolves-
1721022Charlotte Checkers-Chicago Wolves-
1741037Henderson Silver Knights-Chicago Wolves-
1761049Chicago Wolves-Colorado Eagles-
1781064Chicago Wolves-Laval Rocket-
1811083Iowa Wild-Chicago Wolves-
1821088Manitoba Moose-Chicago Wolves-
1851107Chicago Wolves-Grand Rapids Griffins-
1861114Chicago Wolves-Utica Comets-
1881130Chicago Wolves-Hershey Bears-
1901144Chicago Wolves-Texas Stars-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité50005000
Prix des billets3515
Assistance121,372134,524
Assistance PCT89.91%99.65%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
14 9478 - 94.78% 345,784$9,336,163$10000110

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
2,270,562$ 3,446,000$ 3,446,000$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 2,106,111$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
4,840,973$ 65 19,453$ 1,264,445$




Chicago Wolves Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Chicago Wolves Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Chicago Wolves Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA