Login

Chicago Wolves
GP: 41 | W: 20 | L: 17 | OTL: 4 | P: 44
GF: 124 | GA: 133 | PP%: 25.74% | PK%: 73.81%
GM : Francis Lachance | Morale : 99 | Team Overall : 65
Next Games #567 vs Laval Rocket
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Chicago Wolves
20-17-4, 44pts
2
FINAL
1 Belleville Senators
22-17-2, 46pts
Team Stats
W2StreakOTL1
8-11-2Home Record11-9-2
12-6-2Home Record11-8-0
6-3-1Last 10 Games4-4-2
3.02Goals Per Game2.71
3.24Goals Against Per Game2.88
25.74%Power Play Percentage17.12%
73.81%Penalty Kill Percentage83.96%
Hartford Wolfpack
21-17-4, 46pts
3
FINAL
7 Chicago Wolves
20-17-4, 44pts
Team Stats
L1StreakW2
10-8-3Home Record8-11-2
11-9-1Home Record12-6-2
5-2-3Last 10 Games6-3-1
3.48Goals Per Game3.02
3.26Goals Against Per Game3.24
17.89%Power Play Percentage25.74%
71.77%Penalty Kill Percentage73.81%
Chicago Wolves
20-17-4, 44pts
Day 97
Laval Rocket
21-14-5, 47pts
Team Stats
W2StreakW3
8-11-2Home Record8-7-3
12-6-2Away Record13-7-2
6-3-1Last 10 Games7-3-0
3.02Goals Per Game3.40
3.24Goals Against Per Game3.40
25.74%Power Play Percentage23.36%
73.81%Penalty Kill Percentage74.53%
Chicago Wolves
20-17-4, 44pts
Day 99
Grand Rapids Griffins
19-17-3, 41pts
Team Stats
W2StreakL2
8-11-2Home Record8-9-2
12-6-2Away Record11-8-1
6-3-1Last 10 Games4-5-1
3.02Goals Per Game2.92
3.24Goals Against Per Game2.92
25.74%Power Play Percentage26.05%
73.81%Penalty Kill Percentage75.41%
Chicago Wolves
20-17-4, 44pts
Day 102
Providence Bruins
22-13-3, 47pts
Team Stats
W2StreakW2
8-11-2Home Record10-7-1
12-6-2Away Record12-6-2
6-3-1Last 10 Games3-5-2
3.02Goals Per Game3.24
3.24Goals Against Per Game3.24
25.74%Power Play Percentage21.35%
73.81%Penalty Kill Percentage82.76%
Team Leaders
Goals
Terik Parascak
18
Assists
Terik Parascak
28
Points
Terik Parascak
46
Plus/Minus
Luke Mittelstadt
6
Wins
Michael Hrabal
8
Save Percentage
Michael Hrabal
0.929

Team Stats
Goals For
124
3.02 GFG
Shots For
1417
34.56 Avg
Power Play Percentage
25.7%
26 GF
Offensive Zone Start
38.4%
Goals Against
133
3.24 GAA
Shots Against
1576
38.44 Avg
Penalty Kill Percentage
73.8%%
11 GA
Defensive Zone Start
37.6%
Team Info

General ManagerFrancis Lachance
CoachPaul Maurice
DivisionEastern
ConferenceConference 1
Captain
Assistant #1
Assistant #2


Arena Info

Capacity10,000
Attendance10,000
Season Tickets4,000


Roster Info

Pro Team24
Farm Team21
Contract Limit45 / 75
Prospects2


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Player Name
C
L
R
D
CON
CK
FG
DI
SK
ST
EN
DU
PH
FO
PA
SC
DF
PS
EX
LD
PO
MO
OV
TA
SP
Age
Contract
Salary
1Juraj Slafkovsky (R)X97.008143747883707081637576727355548999690201925,000$
2Terik Parascak (R)X99.007329818573767681637774727429418299680183925,000$
3Martin Frk X100.007741768578858567526468666584735099680301750,000$
4Nicholas HenryX99.0075387682757778725671716868626359996702511,000,000$
5Cutter Gauthier (R)XX97.007534768078727270836774707337388599660201925,000$
6Artyom ManyukanX100.006124808765757770506565606564804699650262800,000$
7Anthony SalinitriX100.006128787771677165795765626872764599630262510,000$
8Tyler SoyX99.005115888671748160865664606866714099630271510,000$
9Alex DostieX100.005216878674788161875760656358555599630271600,000$
10Christopher Lalancette X100.00418998775828358875558586367713999630301510,000$
11Connor Carrick X100.005324908777868566566866626476903399680301750,000$
12Tristan Luneau (R)X99.006936767174727278587268676847617699660203500,000$
13Henry Thrun (R)X100.006633818777838364526353625548586399650231725,000$
14Luke Mittelstadt (R)X100.006533757770727269507069626843525799640212500,000$
15Jakub VotjaX100.007439647168606057516464666382821799630371500,000$
16Matthew CairnsX100.006933776976687148494848715052555799620262625,000$
17Yann SauveX100.004811998781807936483537714871712299620342500,001$
18Will BorgenX100.005722817975737749544641665063844999620271500,001$
Scratches
1Filip SveningssonX100.0083506587767276775167755868707046996802531,100,000$
2Reid DukeX91.125625837776737758865260626875764399620283510,000$
3Mitchell WheatonX94.975520977883848556545453685561654099650292880,000$
TEAM AVERAGE98.81642981817575776463616265646166529965
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Goalie Name
CON
SK
DU
EN
SZ
AG
RB
SC
HS
RT
PH
PS
EX
LD
PO
MO
OV
TA
SP
Age
Contract
Salary
1Michael Hrabal (R)100.00807881858180808079777841398199620192650,000$
2Topias Leinonen (R)100.00777885857483837373726841407899610201650,000$
Scratches
1Frans Tuohimaa 94.008285817992717176766965787530996503311,000,000$
TEAM AVERAGE98.0080808283827878767673705351639963
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Paul Maurice69898672949578CAN564250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Player Name
Team Name
POS
GP
G
A
P
+/-
PIM
PIM5
HIT
HTT
SHT
OSB
OSM
SHT%
SB
MP
AMG
PPG
PPA
PPP
PPS
PPM
PKG
PKA
PKP
PKS
PKM
GW
GT
FO%
FOT
GA
TA
EG
HT
P/20
PSG
PSS
FW
FL
FT
S1
S2
S3
1Terik ParascakChicago Wolves (CAR)RW41182846-184048671745110710.34%2679919.49413172988000081033.33%483013121.1503000234
2Juraj SlafkovskyChicago Wolves (CAR)LW41152742-1915577461344110111.19%3281219.824121621870000152145.83%482917201.0313100321
3Tyler SoyChicago Wolves (CAR)C411121321201869106295310.38%2276318.632469510002383153.26%6442115000.8400000012
4Martin Frk Chicago Wolves (CAR)RW41121527120834114636898.22%2872317.651451771000000244.00%253210010.7500000210
5Christopher Lalancette Chicago Wolves (CAR)C41121123-300173994295612.77%2877718.973141269000052056.07%4121611000.5900000123
6Nicholas HenryChicago Wolves (CAR)RW41111021-460746214050867.86%2573818.00000000000211145.20%1772813000.5712000212
7Cutter GauthierChicago Wolves (CAR)C/LW2671320-12100363653163613.21%1152020.014591352000021147.37%5511414000.7712000013
8Tristan LuneauChicago Wolves (CAR)D3721416-226038405117183.92%3875120.3104488700004010%01925000.4300000000
9Artyom ManyukanChicago Wolves (CAR)RW417916-120203310237636.86%1153413.03000000001131043.75%32289000.6000000101
10Filip SveningssonChicago Wolves (CAR)LW236612-46040349033676.67%1238216.62000000000132050.00%181512000.6300000012
11Anthony SalinitriChicago Wolves (CAR)C414711-116041406314406.35%1954413.2700000000091044.95%1981214000.4000000010
12Alex DostieChicago Wolves (CAR)C414610-72014255111327.84%173438.3900003000041056.44%30374000.5800000001
13Henry ThrunChicago Wolves (CAR)D4009912029282714140%4165516.40000036000125000%0828000.2700000000
14Mitchell WheatonChicago Wolves (CAR)D2936940016421391623.08%2552218.02213236000015000%0427000.3400000010
15Reid DukeChicago Wolves (CAR)C4144842018263561011.43%103959.64235456000011054.12%170814000.4000000000
16Connor Carrick Chicago Wolves (CAR)D41077-234023484816260%5777819.00011430000022000%01323000.1800000000
17Luke MittelstadtChicago Wolves (CAR)D273476403538341298.82%3649818.4630386500005100%0817000.2812000001
18Will BorgenChicago Wolves (CAR)D41066-6207187680%293829.3200006000013000%0011000.3100000000
19Jakub VotjaChicago Wolves (CAR)D41235-4605029359135.71%3764115.65101453000014100%0219000.1600000000
20Yann SauveChicago Wolves (CAR)D41134-42022392311.11%123618.8200000000016000%0313000.2200000010
21Matthew CairnsChicago Wolves (CAR)D41000-22011185340%193749.1400005000019000%011300000000000
Team Total or Average797122209331-12385569780214174418518.61%5351230215.44264874131802000427018750.99%2626298322330.54412100111520
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Goalie Name
Team Name
GP
W
L
OTL
PCT
GAA
MP
PIM
SO
GA
SA
SAR
A
EG
PS %
PSA
ST
BG
S1
S2
S3
1Michael HrabalChicago Wolves (CAR)168520.9292.709120041578280010.77891525331
2Frans Tuohimaa Chicago Wolves (CAR)126600.9083.766872043469255201.0002121200
3Topias LeinonenChicago Wolves (CAR)156620.9113.21880204752825910001415310
Team Total or Average43201740.9173.17248040131157579431114141841


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name
Team Name
POS
Age
Birthday
Rookie
Weight
Height
No Trade
Available For Trade
Acquired By
Last Trade Date
Force Waivers
Waiver Possible
Contract
Contrat Signature Date
Type
Current Salary
Salary Remaining
Salary Cap
Salary Cap Remaining
Exclude from Salary Cap
Salary Year 2
Salary Year 3
Salary Year 4
Salary Year 5
Salary Year 6
Salary Year 7
Salary Year 8
Salary Year 9
Salary Year 10
No Trade Year 2
No Trade Year 3
No Trade Year 4
No Trade Year 5
No Trade Year 6
No Trade Year 7
No Trade Year 8
No Trade Year 9
No Trade Year 10
Link
Alex DostieChicago Wolves (CAR)C271987-10-09No187 Lbs6 ft1NoNoN/ANoNo1Pro & Farm600,000$301,571$0$0$No------------------
Anthony SalinitriChicago Wolves (CAR)C261988-08-31No186 Lbs5 ft11NoNoFree AgentNoNo22024-09-02Pro & Farm510,000$256,335$0$0$No510,000$--------No--------
Artyom ManyukanChicago Wolves (CAR)RW261988-09-04No159 Lbs5 ft7NoNoFree AgentNoNo22024-09-02Pro & Farm800,000$402,094$0$0$No800,000$--------No--------
Christopher Lalancette Chicago Wolves (CAR)C301984-10-14No197 Lbs6 ft1NoNoN/ANoNo1Pro & Farm510,000$256,335$0$0$No------------------
Connor Carrick Chicago Wolves (CAR)D301984-10-14No206 Lbs6 ft1NoNoN/ANoNo1Pro & Farm750,000$376,963$0$0$No------------------
Cutter GauthierChicago Wolves (CAR)C/LW201994-09-01Yes206 Lbs6 ft4NoNoN/ANoNo1Pro & Farm925,000$464,921$0$0$No------------------
Filip SveningssonChicago Wolves (CAR)LW251989-09-07No196 Lbs6 ft3NoNoFree AgentNoNo32024-09-02Pro & Farm1,100,000$552,880$0$0$No1,100,000$1,100,000$-------NoNo-------
Frans Tuohimaa (Out of Payroll)Chicago Wolves (CAR)G331981-10-14No190 Lbs6 ft2NoNoN/ANoNo1Pro & Farm1,000,000$502,618$0$0$Yes------------------
Henry ThrunChicago Wolves (CAR)D231991-08-31Yes207 Lbs6 ft3NoNoN/ANoNo1Pro & Farm725,000$364,398$0$0$No------------------
Jakub VotjaChicago Wolves (CAR)D371977-08-31No35 Lbs1 ft7NoNoN/ANoNo1Pro & Farm500,000$251,309$0$0$No------------------
Juraj SlafkovskyChicago Wolves (CAR)LW201994-09-01Yes235 Lbs6 ft5NoNoN/ANoNo1Pro & Farm925,000$464,921$0$0$No------------------
Luke MittelstadtChicago Wolves (CAR)D211993-09-09Yes175 Lbs6 ft1NoNoN/ANoNo2Pro & Farm500,000$251,309$0$0$No500,000$--------No--------
Martin Frk Chicago Wolves (CAR)RW301984-10-14No219 Lbs6 ft1NoNoN/ANoNo1Pro & Farm750,000$376,963$0$0$No------------------
Matthew CairnsChicago Wolves (CAR)D261988-08-31No210 Lbs6 ft2NoNoN/ANoNo2Pro & Farm625,000$314,136$0$0$No625,000$--------No--------
Michael HrabalChicago Wolves (CAR)G191995-09-09Yes220 Lbs6 ft9NoNoN/ANoNo2Pro & Farm650,000$326,702$0$0$No650,000$--------No--------
Mitchell Wheaton (Out of Payroll)Chicago Wolves (CAR)D291985-10-05No237 Lbs6 ft5NoNoN/ANoNo2Pro & Farm880,000$442,304$0$0$Yes880,000$--------No--------
Nicholas HenryChicago Wolves (CAR)RW251989-10-04No205 Lbs5 ft11NoNoTrade2024-01-05NoNo1Pro & Farm1,000,000$502,618$0$0$No------------------
Reid Duke (Out of Payroll)Chicago Wolves (CAR)C281986-09-07No205 Lbs6 ft0NoNoFree AgentNoNo32024-09-02Pro & Farm510,000$256,335$0$0$Yes510,000$510,000$-------NoNo-------
Terik ParascakChicago Wolves (CAR)RW181996-09-03Yes179 Lbs5 ft11NoNoProspectNoNo32024-09-02Pro & Farm925,000$464,921$0$0$No925,000$925,000$-------NoNo-------
Topias LeinonenChicago Wolves (CAR)G201994-09-01Yes238 Lbs6 ft7NoNoN/ANoNo1Pro & Farm650,000$326,702$0$0$No------------------
Tristan LuneauChicago Wolves (CAR)D201994-09-03Yes192 Lbs6 ft2NoNoProspectNoNo32024-09-02Pro & Farm500,000$251,309$0$0$No500,000$500,000$-------NoNo-------
Tyler SoyChicago Wolves (CAR)C271987-10-09No186 Lbs6 ft0NoNoN/ANoNo1Pro & Farm510,000$256,335$0$0$No------------------
Will BorgenChicago Wolves (CAR)D271987-09-04No202 Lbs6 ft2NoNoN/ANoNo1Pro & Farm500,001$251,309$0$0$No------------------
Yann SauveChicago Wolves (CAR)D341980-08-06No229 Lbs6 ft2NoNoN/ANoNo2Pro & Farm500,001$251,309$0$0$No500,001$--------No--------
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2425.88196 Lbs6 ft01.63701,875$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Juraj SlafkovskyCutter GauthierTerik Parascak31014
2Tyler SoyMartin Frk 28023
3Nicholas HenryAnthony SalinitriArtyom Manyukan22023
4Christopher Lalancette Nicholas Henry19032
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Connor Carrick Tristan Luneau33122
2Luke MittelstadtHenry Thrun27122
3Will BorgenJakub Votja26122
4Matthew CairnsYann Sauve14122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Juraj SlafkovskyCutter GauthierTerik Parascak53005
2Christopher Lalancette Tyler SoyMartin Frk 47014
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Tristan LuneauLuke Mittelstadt53014
2Connor Carrick Jakub Votja47113
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Tyler SoyJuraj Slafkovsky55131
2Christopher Lalancette Terik Parascak45131
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Matthew CairnsYann Sauve55140
2Matthew CairnsWill Borgen45140
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Tyler Soy55140Matthew CairnsYann Sauve54140
2Anthony Salinitri45140Will BorgenJakub Votja46140
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Cutter GauthierJuraj Slafkovsky55113
2Tyler SoyTerik Parascak45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Connor Carrick Tristan Luneau55122
2Henry ThrunLuke Mittelstadt45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Juraj SlafkovskyCutter GauthierTerik ParascakTristan LuneauLuke Mittelstadt
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Juraj SlafkovskyCutter GauthierTerik ParascakTristan LuneauLuke Mittelstadt
Extra Forwards
Normal PowerPlayPenalty Kill
Tyler Soy, Juraj Slafkovsky, Artyom ManyukanTyler Soy, Alex DostieTyler Soy
Extra Defensemen
Normal PowerPlayPenalty Kill
Connor Carrick , Will Borgen, Matthew CairnsWill BorgenLuke Mittelstadt, Tristan Luneau
Penalty Shots
Terik Parascak, Juraj Slafkovsky, Cutter Gauthier, Luke Mittelstadt, Nicholas Henry
Goalie
#1 : , #2 : Michael Hrabal, #3 : Topias Leinonen
Custom OT Lines Forwards
Juraj Slafkovsky, Cutter Gauthier, Anthony Salinitri, Terik Parascak, Tyler Soy, Nicholas Henry, Nicholas Henry, , Martin Frk , Christopher Lalancette , Alex Dostie
Custom OT Lines Defensemen
Luke Mittelstadt, Connor Carrick , Henry Thrun, Tristan Luneau, Jakub Votja


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Overall
Home
Visitor
#
VS Team
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
P
PCT
G
A
TP
SO
EG
GP1
GP2
GP3
GP4
SHF
SH1
SP2
SP3
SP4
SHA
SHB
Pim
Hit
PPA
PPG
PP%
PKA
PK GA
PK%
PK GF
W OF FO
T OF FO
OF FO%
W DF FO
T DF FO
DF FO%
W NT FO
T NT FO
NT FO%
PZ DF
PZ OF
PZ NT
PC DF
PC OF
PC NT
1Abbotsford's Canucks1010000025-3000000000001010000025-300.000246003639456404784714503039120193266.67%000%053199953.15%48497849.49%32462651.76%838465878369766389
2Bakersfield Condors1010000036-31010000036-30000000000000.000369003639456374784714503043114172150.00%2150.00%053199953.15%48497849.49%32462651.76%838465878369766389
3Belleville Senators2010100047-31010000026-41000100021120.500459003639456634784714503080272386116.67%110.00%053199953.15%48497849.49%32462651.76%838465878369766389
4Bridgeport's Islanders2110000045-11010000024-21100000021120.500459003639456694784714503082268337114.29%4175.00%053199953.15%48497849.49%32462651.76%838465878369766389
5Calgary Wranglers22000000734110000003121100000042241.00071118003639456794784714503076206323133.33%30100.00%053199953.15%48497849.49%32462651.76%838465878369766389
6Charlotte Checkers2020000036-31010000013-21010000023-100.000369003639456614784714503079320376116.67%000%053199953.15%48497849.49%32462651.76%838465878369766389
7Colorado Eagles22000000624110000003121100000031241.000691500363945668478471450308916637100.00%30100.00%053199953.15%48497849.49%32462651.76%838465878369766389
8Grand Rapids Griffins1010000013-21010000013-20000000000000.00011200363945631478471450303412620100.00%3166.67%053199953.15%48497849.49%32462651.76%838465878369766389
9Hartford Wolfpack220000001596110000007341100000086241.000152742003639456814784714503077447375240.00%10100.00%053199953.15%48497849.49%32462651.76%838465878369766389
10Henderson Silver Knights211000008801010000035-21100000053220.50081220103639456764784714503072336446233.33%3166.67%053199953.15%48497849.49%32462651.76%838465878369766389
11Hershey Bears21000010422110000002111000001021141.000459003639456624784714503049202326116.67%10100.00%053199953.15%48497849.49%32462651.76%838465878369766389
12Iowa Wild211000008801010000047-31100000041320.50081523003639456574784714503054172369222.22%10100.00%053199953.15%48497849.49%32462651.76%838465878369766389
13Laval Rocket11000000413110000004130000000000021.000461000363945634478471450304218212100.00%10100.00%053199953.15%48497849.49%32462651.76%838465878369766389
14Lehigh Valley Phantoms10000010541000000000001000001054121.0005813003639456284784714503047152114250.00%110.00%053199953.15%48497849.49%32462651.76%838465878369766389
15Ontario Reign21100000651110000004131010000024-220.5006915003639456724784714503081272285120.00%10100.00%053199953.15%48497849.49%32462651.76%838465878369766389
16Providence Bruins1010000014-31010000014-30000000000000.000123003639456314784714503030144145120.00%20100.00%053199953.15%48497849.49%32462651.76%838465878369766389
17Rochester Americans1000000134-1000000000001000000134-110.500369003639456434784714503053104172150.00%2150.00%053199953.15%48497849.49%32462651.76%838465878369766389
18Rockford IceHogs1010000013-2000000000001010000013-200.00012300363945626478471450303510211300.00%10100.00%053199953.15%48497849.49%32462651.76%838465878369766389
19San Diego Gulls 11000000633110000006330000000000021.00061117003639456284784714503041170263266.67%000%053199953.15%48497849.49%32462651.76%838465878369766389
20San Jose Barracuda21001000752100010003211100000043141.00071118003639456774784714503089242293266.67%10100.00%053199953.15%48497849.49%32462651.76%838465878369766389
21Springfield Thunderbirds2110000058-31010000027-51100000031220.5005101500363945672478471450305021433500.00%220.00%053199953.15%48497849.49%32462651.76%838465878369766389
22Syracuse Crunch2010010038-51010000015-41000010023-110.25036900363945662478471450307329234300.00%10100.00%053199953.15%48497849.49%32462651.76%838465878369766389
23Texas Stars2020000059-41010000034-11010000025-300.0005914003639456654784714503093314393266.67%2150.00%053199953.15%48497849.49%32462651.76%838465878369766389
24Toronto Marlies1000010023-11000010023-10000000000010.50023500363945637478471450303611216200.00%10100.00%053199953.15%48497849.49%32462651.76%838465878369766389
25Utica Comets20100100710-31000010034-11010000046-210.25071219003639456774784714503094248315120.00%4175.00%053199953.15%48497849.49%32462651.76%838465878369766389
26Wilkes-Barre/Scranton Penguins11000000422000000000001100000042221.000481200363945641478471450303814214200.00%10100.00%053199953.15%48497849.49%32462651.76%838465878369766389
Total41161702321124133-921711012006074-1420960112164595440.5371242093331036394561417478471450301576535896971012625.74%421173.81%053199953.15%48497849.49%32462651.76%838465878369766389
_Since Last GM Reset41161702321124133-921711012006074-1420960112164595440.5371242093331036394561417478471450301576535896971012625.74%421173.81%053199953.15%48497849.49%32462651.76%838465878369766389
_Vs Conference41161702321124133-921711012006074-1420960112164595440.5371242093331036394561417478471450301576535896971012625.74%421173.81%053199953.15%48497849.49%32462651.76%838465878369766389
_Vs Division2157013216068-81135002002637-1110220112134313200.476601001600036394567204784714503081429651346551120.00%23673.91%053199953.15%48497849.49%32462651.76%838465878369766389

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4144W2124209333141715765358969710
All Games
GPWLOTWOTL SOWSOLGFGA
4116172321124133
Home Games
GPWLOTWOTL SOWSOLGFGA
2171112006074
Visitor Games
GPWLOTWOTL SOWSOLGFGA
209611216459
Last 10 Games
WLOTWOTL SOWSOL
630001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1012625.74%421173.81%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
478471450303639456
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
53199953.15%48497849.49%32462651.76%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
838465878369766389


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Day
Game
Visitor Team
Score
Home Team
Score
ST
OT
SO
RI
Link
114Providence Bruins4Chicago Wolves1BLBoxScore
424Henderson Silver Knights5Chicago Wolves3BLBoxScore
640Chicago Wolves2Charlotte Checkers3ALBoxScore
853Bakersfield Condors6Chicago Wolves3BLBoxScore
1063Chicago Wolves4Wilkes-Barre/Scranton Penguins2AWBoxScore
1277Chicago Wolves4Calgary Wranglers2AWBoxScore
1490Chicago Wolves2Syracuse Crunch3ALXBoxScore
17103Chicago Wolves2Bridgeport's Islanders1AWBoxScore
20122Chicago Wolves2Texas Stars5ALBoxScore
22132Grand Rapids Griffins3Chicago Wolves1BLBoxScore
25147Chicago Wolves2Ontario Reign4ALBoxScore
26155Chicago Wolves3Colorado Eagles1AWBoxScore
30181Chicago Wolves3Springfield Thunderbirds1AWBoxScore
33195Toronto Marlies3Chicago Wolves2BLXBoxScore
34203Chicago Wolves8Hartford Wolfpack6AWBoxScore
36216Chicago Wolves2Abbotsford's Canucks5ALBoxScore
38226Iowa Wild7Chicago Wolves4BLBoxScore
41242Syracuse Crunch5Chicago Wolves1BLBoxScore
43253Belleville Senators6Chicago Wolves2BLBoxScore
45268Chicago Wolves5Lehigh Valley Phantoms4AWXXBoxScore
47281Laval Rocket1Chicago Wolves4BWBoxScore
51305Springfield Thunderbirds7Chicago Wolves2BLBoxScore
53314Chicago Wolves1Rockford IceHogs3ALBoxScore
56330Utica Comets4Chicago Wolves3BLXBoxScore
58341Chicago Wolves4San Jose Barracuda3AWBoxScore
60354Ontario Reign1Chicago Wolves4BWBoxScore
63371San Diego Gulls 3Chicago Wolves6BWBoxScore
65384Hershey Bears1Chicago Wolves2BWBoxScore
68399Chicago Wolves5Henderson Silver Knights3AWBoxScore
70409Chicago Wolves4Iowa Wild1AWBoxScore
71416Chicago Wolves4Utica Comets6ALBoxScore
75439Bridgeport's Islanders4Chicago Wolves2BLBoxScore
77451Calgary Wranglers1Chicago Wolves3BWBoxScore
79464Chicago Wolves2Hershey Bears1AWXXBoxScore
80472Chicago Wolves3Rochester Americans4ALXXBoxScore
84495Colorado Eagles1Chicago Wolves3BWBoxScore
86506Texas Stars4Chicago Wolves3BLBoxScore
88517San Jose Barracuda2Chicago Wolves3BWXBoxScore
91533Charlotte Checkers3Chicago Wolves1BLBoxScore
93547Chicago Wolves2Belleville Senators1AWXBoxScore
95558Hartford Wolfpack3Chicago Wolves7BWBoxScore
97567Chicago Wolves-Laval Rocket-
99581Chicago Wolves-Grand Rapids Griffins-
102596Chicago Wolves-Providence Bruins-
104606Chicago Wolves-Bakersfield Condors-
107627Abbotsford's Canucks-Chicago Wolves-
109638Lehigh Valley Phantoms-Chicago Wolves-
110647Chicago Wolves-Manitoba Moose-
112656Chicago Wolves-San Diego Gulls -
115674Rockford IceHogs-Chicago Wolves-
117685Wilkes-Barre/Scranton Penguins-Chicago Wolves-
120703Rochester Americans-Chicago Wolves-
123720Chicago Wolves-Toronto Marlies-
127738Manitoba Moose-Chicago Wolves-
131759San Jose Barracuda-Chicago Wolves-
132770Lehigh Valley Phantoms-Chicago Wolves-
135788Wilkes-Barre/Scranton Penguins-Chicago Wolves-
138809Chicago Wolves-Syracuse Crunch-
141827Chicago Wolves-Grand Rapids Griffins-
144842Chicago Wolves-Ontario Reign-
147862Chicago Wolves-Laval Rocket-
149877Charlotte Checkers-Chicago Wolves-
150882Chicago Wolves-Hershey Bears-
Trade Deadline --- Trades can’t be done after this day is simulated!
153896Utica Comets-Chicago Wolves-
154908San Diego Gulls -Chicago Wolves-
157930Bakersfield Condors-Chicago Wolves-
159941Chicago Wolves-Calgary Wranglers-
161952Iowa Wild-Chicago Wolves-
163969Chicago Wolves-Abbotsford's Canucks-
165977Chicago Wolves-Toronto Marlies-
166985Chicago Wolves-Bridgeport's Islanders-
168998Chicago Wolves-Springfield Thunderbirds-
1711017Rochester Americans-Chicago Wolves-
1731032Rockford IceHogs-Chicago Wolves-
1751045Chicago Wolves-Henderson Silver Knights-
1761048Colorado Eagles-Chicago Wolves-
1781066Chicago Wolves-Hartford Wolfpack-
1811087Providence Bruins-Chicago Wolves-
1841103Chicago Wolves-Texas Stars-
1861114Belleville Senators-Chicago Wolves-
1881128Chicago Wolves-Manitoba Moose-
1901135Laval Rocket-Chicago Wolves-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity50005000
Ticket Price3515
Attendance105,000105,000
Attendance PCT100.00%100.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
20 10000 - 100.00% 372,500$7,822,500$10000110

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,707,750$ 2,891,000$ 2,891,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,583,395$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
7,450,000$ 96 16,445$ 1,578,720$




Chicago Wolves Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Chicago Wolves Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Chicago Wolves Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA